Scalable, Muttithreaded, and Dataflow Architectures " 459

1: *
L Dataflow graphs as
5 a machine language
| A
2 ! 3 * \' \‘
MIT Tagged Token Manchester
L Dataflow Architecture Dataflow
1 24 N v
! | ‘
ETL Sigma-1
4 - 5: 1 6 *
l—— —, 720 Explicit Token
i Store Machines
N
7 + 8 ! \ \‘
| l : MIT/Motorola ETL EM-4
Monsoon
9| - P-RISC: “RISC-ified” datafiow
] .
cOS X Y
MIT/Motorola *T
(a) Dataflow graph for computing {b}) Evolution tree of dynamic dataflow machines (Courtesy

cos x (Courtesy of Arvind) of R. Nikhil)

)

This dataflow graph shows how to obtain an approximation of cosx by the following power series
computation:

Example 9.7 The dataflow graph for the calculation of
cosx (Arvind, 1991).

2z x4 xﬁ x2 x4 x6

cosx 2] - —+ — - —=1-"—+ — - — (9.6)

20 4 8 2 24 72
The corresponding dataflow graph consists of nine operators (actors or nodes). The edges in the graph
interconnect the operator nodes. The successive powers of x are obtained by repeated multiplications. The

constants (divisors) are fed into the nodes directly. All intermediate results are forwarded among the nodes.

460" Advanced Computer Architecture

Static versus Dynamic Dataflow Static dataflow computers simply disallow more than one token to
reside on any one arc, which is enforced by the firing rule: A node is enabled as soon as tokens are present
on all input arcs and there is no token on any of its output arcs. Jack Dennis proposed the very first static
dataflow computer in 1974.

The static firing rule is difficult to implement in hardware. Special feedback acknowledge signals are
needed to secure the correct token passing between producing nodes and consuming nodes. Also, the static
rule makes it very inefficient to process arrays of data. The number of acknowledge signals can grow too fast
to be supported by hardware.

However, static dataflow inspired the development of dynantic dataflow computers, which were researched
vigorously at MIT and in Japan. Ina dynamic architecture, cach data token is tagged with a context descriptor,
called a tagged token. The firing rule of tagged-token dataflow is changed to: A node is enabled as soon as
tokens with identical tags are present at each of its input arcs.

With tagged tokens, tag matching becomes necessary. Special hardware mechanisms are needed to achieve
this. In the rest of this section, we discuss only dynamic dataflow computers. Arvind of MIT pioneered the
development of tagged-token architecture for dynamic dataflow computers.

Although data dependence does exist in datafiow graphs, it does not force unnecessary sequentialization,
and dataflow computers schedule instructions according to the availability of the operands. Conceptually,
“token”-carrying values flow along the edges of the graph. Values or tokens may be memory locations.

Each instruction waits for tokens on all inputs, consurmes input tokens, computes output values based on
input values, and produces tokens on outputs. No further restriction on instruction ordering is imposed. No
side effects are produced with the execution of instructions ina datafiow computer. Both dataflow graphs and
machines implement only functional languages.

Pure Dataflow Machines Figure 9.31b shows the evolution of dataflow computers. The MIT tagged-
token dataflow architecture (TTDA) (Arvind et al, 1983), the Manchester Dataflow Computer (Gurd and
Watson, 1982), and the ETL Sigma-1 (Hiraki and Shimada, 1987) were ali pure datafiow computers. The
TTDA was simulated but never built. The Manchester machine was actually built and became operational in
mid-1982. It operated asynchronously using a separate clock for each processing element with a performance
comparable to that of the VAX/780.

The ETL Sigma-1 was developed at the Electrotechnical Laboratory, Tsukuba, Japan. It consisted of 128
PEs fully synchronous with a 10-MHz clock. It implemented the I-structure memory proposed by Arvind.
The full configuration became operational in 1987 and achieved a 170-Mflops performance. The major
problem in using the Sigma-1 was lack of high-level language for users.

Explicit Token Store Machines These were successors to the pure dataflow machines. The basic idea is to
climinate associative token matching. The waiting token memory is directly addressed, with the use of full/
empty bits. This idea was used in the MIT/Motorola Monsoon (Papadopoulos and Culler, 1988) and in the
ETL EM-4 system (Sakai et al, 1989).

Multithreading was supported in Monsoon using multiple register sets. Thread-based programming was

conceptually introduced in Monsoon. The maximum configuration built consisted of eight processors and
eight I-structure memory modules using an 8 x 8§ crossbar network. It became operational in 1991.

Scalable, Multithreaded, and Dataflow Architectures - s

EM-4 was an extension of the Sigrna-1. It was designed for 1024 nodes, but only an 80-node prototype
became operational in 1990. The prototype achieved 815 MIPS in an 80 x 80 matrix multiplication benchmark.
We will study the details of EM-4 in Section 9.5.2.

Hybrid and Unified Architectures These are architectures combining positive features from the von
Neumann and dataflow architectures. The best research examples include the MIT P-RISC (Nikhil and
Arvind, 1988), the IBM Empire (Iannucci et al., 1991), and the MIT/Motorola *T (Nikhil, Papadopoulos,
Arvind, and Greiner, 1991).

P-RISC was a “RISC-ified” dataflow architecture. It allowed tighter encodings of the dataflow graphs
and produced longer threads for better performance. This was achieved by splitting “complex™ dataflow
instructions into separate “simple” component instructions that could be composed by the compiler. It
used traditicnal instruction sequencing. It performed all intraprocessor communication via memory and
implemented *joins” explicitly using memory locations.

P-RISC replaced some of the dataflow synchronization with conventional program counter-based
synchronization. IBM Empire was a von Neumann/dataflow hybrid architecture under development at IBM -
based on the thesis of lannucci (1988). The *T was a latter effort at MIT joining both the dataflow and von
Neumann ideas, to be discussed in Section 9.5.3.

9.5.2 ETL/EM-4in Japan

EM-4 had the overall system organization as shown in Fig. 9.32a. Each EMC-R node was a single-chip
processor without floating-point hardware but including a switch of the network. Each node played the
role of I-structure memory and had 1,31 Mbytes of static RAM. An Omega network was used to provide
interconnections among the nodes.

The Node Architecture The internal design of the processor chip and of the node memory are shown
in Fig. 9.32b. The processor chip communicated with the network through a 3 x 3 crossbar switch unit.
The processor and its memory were interfaced with a memory contro! unit. The memory was used to hold
programs (template segments) as well as tokens (operand segments, heaps, or frames) waiting to be fetched.

The processor consisted of six component units. The input buffer was used as a token store with a capacity
of 32 words. The ferch-match unit fetched tokens from the memory and performed tag-matching operations
among the tokens fetched in. Instructions were directly fetched from the memory through the memory
controller.

The heart of the processor was the execution unit, which fetched instructicns until the end of a thread.
Instructions with matching tokens were executed. Instructions could emit tokens or write to registers,
Instructions were fetched continually using traditional sequencing (PC + 1 or branch) until a “stop” flag was
raised to indicate the end of a thread. Then another pair of tokens was accepted. Each instruction in a thread
specified the two sources for the next instruction in the thread.

Advanced Computer Architecture

Memaory

Program
(Template
sagments)

Waiting

Node Node
Memory Memory
[N
EMC-R EMC-R
Processor Processor
Omega Network
(a) Global organization
Fetch-Match
Unit
Overflow
Input
Buffer Execution
Unit Uinit
(Token Memory
queue) Instruction Control
Fetch Unit
{till end
of thread)
Register Execute and
File Emit Tokens
Switching
Unit
(3 x 3 crossbar)

Network

{b) The EMC-R processor design
Fig.9.32 The ETL EM-4 dataflow ardmecture (Courtesy of Sakai, Yamagucha et al, Electrotechnical
LzbontoryTsukuba.japan 1991) _ S _

Tokens
(operand
segments,
i.e.
frames)

Heap

T

Present bits

Scalable, Multithreaded, and Dataflow Architectures L 463

The same idea was used as in Monsoon for token matching, but with different encoding. All data tokens
were 32 bits, and instruction words were 38 bits. EM-4 supported remote loads and synchronizing loads. The
Jull/empty bits present in memory words were used to synchronize remote loads associated with different
threads.

9.5.3 The MIT/Motorola *T Prototype

The *T project was a direct descendant of a series of MIT dynamic dataflow architectures unifying with the
von Neumann architectures. In this final section, we describe *T, a prototype multithreaded MPP system
based on the work of Nikhil, Papadopoulos, and Arvind of MIT in collaboration with Greiner and Traub of
Motorola. Finally, we compare the dataflow and von Neumann perspectives in building fine-grain, massively
parallel systems.

The Prototype Architecture The *T prototype was a single-address-space system. A “brick™ of 16 nodes
was packaged in a 9-in cube (Fig. 9.33a). The local network was built with 8 x 8 crossbar switching chips. A
brick had the potential to achieve 3200 MIPS or 3.2 Glops. The memory was distributed to the nodes. One
gigabyte of RAM was used per brick. With 200-Mbytes/s links, the /O bandwidth was 6.4 Ghbytes/s per brick,

A 256-node machine could be built with 16 bricks as illustrated in Fig. 9.33b. The 16 bricks were
interconnected by four switching boards. Each board implemented a 16 x 16 crossbar switch. The entire
system could be packaged into a 1.5-m cube. No cables were used between the boards. The package was
limited by connector-pin density. The 256-node machine had the potential to achieve 50,000 MIPS or 50
Gfiops. The bisection bandwidth was 50 Gbytes/s.

The *T Node Design Each node was designed to be implemented with four component units. A Motorola
superscalar RISC microprocessor (MC88110) was modified as a data processor (dP). This dP was optimized
for long threads. Concurrent integer and floating-point operations were performed within each dP.

A synchronization coprocessor (sP) was implemented as an 88000 special-function unit (SFU), which was
optimized for simple, short threads. Both the dP and the sP could handle fast loads. The dP handled incoming
continuation, while the sP handled incoming messages, rload/rstore responses, and joins for messaging or
synchronization purposes. In other words, the sP off-loaded simple message-handling tasks from the main
processor {the dP). Thus the dP would not be disrupted by short messages.

The memory controller handled requests for remote memory load or store, as well as the management
of node memory (64 Mbytes). The network interface unit received or transmitted messages from or to the
network, respectively, as illustrated in Fig. 9.33¢. It should be noted that the sP was built as an on-chip SFU
of the dP.

The MC 88110 family allowed additional on-chip SFUs, with reserved opcode space, common instruction-
issue logic and caches, etc., and direct access to processor registers. Example SFUs included the floating-
point unit, graphics unit, coprocessor, etc. The MC 88110 was itself a two-way superscalar processor driven
by a 50-MHz clock.

New SFUs were added into the MC 88110 to provide 16 buffers for incoming messages and 4 buffers
for outgoing messages. Other SFUs included a continuation stack with 64 entries and a microthreaded
scheduler, which supplied continuations from messages and the continuation stack, etc. Special instructions
were available for packing or unpacking continuations.

Advanced Computer Architecture

a6 L

16in

lOOO

16 out

/ Local Net

LR R J N15

No

{b) A 256-node machine consisting of
16 bricks interconnected by 4 boards of
16 x 16 switches and packaged in a 1.5-m cube

() A brick of 16 nodes with 3.2-
Gflops and 3200-MIPS peak per-
formance, packaged in a 9-in cube

Network (800 MB/s 1VO)

Network Interface Unit

requests
responses
MC 88110
Node ;
- Memory with
Memory
(64-MB) ¥ 1 Controller Message
: Coprocessor
i
:
‘,"
/] (RMem) (dP + sP}
800 MB/s
{c) Interior node architecture with data processor
{MC 88110) and synchronization coprocessor (sP)
, Papadopoulos,

Fig.9.33 The MIT/Motorola *T prototype multithreaded architecture (Courtesy of Nikhil
and Arvind, Proc. 19th.Int. Symip. Computer Arch,, Australla, May: 1992) -

Research Experiments The *T prototype was used to test the effectiveness of the unified architecture
in supporting multithreading operations. The development of *T was influenced by other multithreaded

architectures, including Tera, Alewife, and J-Machine.

Scalable, Muttithreaded, and Dataflow Architectures - 465

The I-structure semantics was also implemented in *T. Full/empty bits were used on producer-
consumer variables. *T treated messages as virtual continuations. Thus busy-waiting was eliminated. Other
optimizations in *T included speculative avoidance of the extra loads and stores through multithreading and
coherent cacheing.

The *T designers wanted to provide a superset of the capabilities of Tera, J-Machine, and EM-4. Compiler
techniques developed for these machines were expected to be applicable to *T. To achieve these goals, a
promising approach was to start with declarative languages while the compiler could aim to extract a large
amount of fine-grain parallelism.

Muitithreading: A Perspective The Dash, KSR-1, and Alewife leveraged existing processor technology.
The advantages of these directory-based cacheing systems include compatibility with existing hardware and
software. But they offer a less aggressive pursuit of parallelism and depend heavily on compilers to obtain
locality. The synchronizing loads are still problematic in these distributed cacheing solutions.

In von Neumann multithreading approaches, the HEP/Tera replicated the conventional instruction stream.
Synchronizing-loads problems were solved by a hardware trap and software. Hybrid architectures, such as
Empire, replicated conventional instruction streams, but they did not preserve registers across threads. The
synchronizing loads were entirely supported in hardware. J-Machine supported three instruction streams
(priorities). Tt grew out of message-passing machines but added support for global addressing. Remote
synchronizing loads were supported by software convention.

In the dataflow approaches, the system-level view has stayed constant from the Tagged-Token Dataflow
Architecture to the *T. The various designs differ in internal node architecture, with trends toward the
removal of intra-node synchronization, using longer threads, high-speed registers, and compatibility with
existing machine codes. The *T designers claimed that the unification of dataflow and von Neumann ideas
would support a scalable shared-memory programming model using existing SIMD/SPMD codes.

Summary

Computer systems have always operated with processors having much faster cycle times than main
memories.With steady advances inVLS! technology over the years, both processors and main memories
have bacome faster, but the relative speed mismatch between them has in fact widened over the years.
Latency hiding techniques are therefore devised to allow processors to operate at high efficiency in spite of
having to access slower memories from time to time; use of cache memories is a common latency hiding
technique. In the context of Massively Parallel Processing (MPP) systems, other technical challenges also
confront system designers in minimizing the impact of memory access latencies.

in this chapter, we studied some basic latency hiding techniques applicable to such systems, namely:
shared virtual memory with some specific examples; prefetching techniques and their effectiveness; and
the use of distributed coherent caches. Scalable Coherent Interface {SCI) provides cache coherence with
distributed directories and sharing lists. We studied several relaxed memory consistency models which
can permit greater exploitation of paralielism in applications; the impact of relaxed consistency models
while runping three specific applications was presented.

466“ Advanced Computer Architecture

Principles of multi-threading were introduced, with specific attention paid to the technical factors
relevant to system design, namely: communication latency on remote access, number of threads, context-
switching overhead, and the interval between context switches. Muitiple context processors have been
designed to provide hardware support for single cycle context switching. Possible context-switching
policies were studied, along with their impact on system efficiency. Multidimensional architectiires were
reviewed as a possible platform for multi-threaded systems.

Fine-grain Multicomputers are specially designed to provide efficient support for fine-grain
paralielism in applications. The MIT J-machine was studied from the points of view of its overall
system design, its Message-Driven Processor (MDP) and instruction set architecture, and the message
format and routing employed in its 3-dimensional mesh.The design goal of Caltech Mosaic C system
was to exploit the advances which had taken place in VLSl and packaging technologies; we studied
the basic node design with its two contexts (for user program and message handler), and basic
8 x 8 mesh design-employed in the system.

In the category of scalable multithreaded archﬁectures. _the Stanford Dash multtprocessor system
utilized directory-based cache coherence in a single address-space dis;rlbuted memory system. Kendall
Square Research KSR-1 system employed 2 cache-only memory design. with a ring-based interconnect.
The Tera multiprocessor system relied for its performance on 2 large degree of multi-threading and
aggressive use of pipelining throughout the system, with a. sparse 3-dimensional torus interconnect.

We also studied the basic concepts and. evolution of dataflow: and hybrid architectures, from the. first
introduction of the concept in 1974 by Jack Dennis at MIT. Specific dataflow and hybrid systems studied in
thls context were the ETL/EM-4 system developed in Japan, and the MiTlMotomia *T prototype system.

o2

Exercises
Problem 9.1 Consider a scalable multiprocessor be satisfied by a local cache. Express E as a
with p processing nodes and distributed shared function of R, L, and h.
memory. Let R be the rate of each processing node (c) Now assume each processor is multithreaded
generating a request to access remote memory to handle N contexts simultaneously. Assume
through the interconnection network. Let L be the a context-switching overhead of C. Express £
average latency for remote memory access. Derive as a function of N,R [, h,and C.
expressions for the processor efficiency E under {(d) Now consider the use of a 2-D r x r torus
each of the following conditions: with > = p and bidirectional links. Let t4 be
(a) The processor is single-threaded, uses only a the time delay between adjacent nodes and
private cache, and has no other latency-hiding t, be the local memory-access time. Assume
mechanisms. Express E as a function of R and that the network is fast enough to respond to
L each request without buffering. Express the
(b) Suppose a coherent cache is supported by fatency L as a function of p, ts and t,. Then
hardware with proper data sharing and h is express the efficiency E as a function of N, R,

the probability that a remote request can h Cptyandt,.

Scatable, Multithreaded, and Dataflow Architectures

Problem 9.2 The following two questions are.

related to the effect of prefetching on latency
tolerance:

{a) Perform an analytical study of the effects
of data prefetching on the performance
(efficiency) of processors in a scalable
multiprocessor system without multithread-
ing.

(b) Repeat part (a) for a multithreaded
multiprocessor system under reasonable
assumptions.

Problem 9.3 The following questions are related
to the effects of memory consistency models:

(a) Perform an analytical study of the effects
of using a relaxed consistency memory
model in a scalable multiprocessor without
multithreading.

(b) Repeat part (a) for a multithreaded
multiprocessor system under reasonable
assumptions,

(c) Can you derive an efficiency expression for
a multiple-context processor supported
by both prefetching and release memory
consistency?

Problem 9.4 Consider a two-dimensional
multicube architecture with m row buses and
m column buses (Fig: 9.18a). Each bus has a
bandwidth of B bits/s. The bus is considered active
when it is actually in progress. The bus utilization
rate g (0 < a £ 1) is defined as the number of active
bus cycles over the total cycles elapsed. The per-
processor request rate r is defined as the number
of requests that a processor sends on either of the
two buses ({for the purpose of memory access, cache
coherence, synchronization, et¢.) per second.
(a) Consider a single-column bus with associated
processors and memory module and express
the bus bandwidth as a function of m,g,and r.
(b} What is the total bus bandwidth available in
the entire system?

- 47

(¢} If r is kept constant as the number of
processors increases, how many requests can
be sent to the system without exceeding the
fimit?

(d) Each request goes through a maximum of two
buses in the multicube. What bus bandwidth
will be needed to satisfy alf the requests?

(e) In parts (b) and (d), does the multicube
provide enough bus bandwidth? Justify the
answer with reasoning.

Problem 9.5 Consider the use of an orthogonal
multiprocessor consisting of 4 processors and
16 orthogonally shared memory modules (Fig. 9.18b)
to perform an unfolded multiplication of two B x 8
matrices in a partitioned SPMD mode.

{a) Show how to distribute the 2 x 2 submatrices
of the input matrix A = (g;} and B = (b)) to the
16 orthogonally shared memory modules.

(b} Specify the SPMD algorithm by involving all
four processors in a synchronized manner
to access either the row memories or the
column memories. Synchronization is handled
at the loop level.

You can assume the use of a pipeline-read

to fetch either one column or one row vector
of the input matrix A or B at a time, and a
pipeline-write to store the product matrix
C = A x B = (c;) elements in a similar fashion.
Assume that sufficient large register windows
are available within each processor to hold all
2 x 2 submatrix elements. Each processor can
perform inner product operations.

(c) Let N x N be the matrix size and k = N/n
the partitioned block size in mapping a large
matrix in the orthogonal memory. Estimate
the number of orthogonal memory accesses
and the number of synchronizations needed
in an SPMD algorithm for multiplying two N x
N matrices on an n-processor OMP. -

460" ki

(d) Repeat the above for a two-dimensional fast
Fourier transform over N x N sample points
on-an n-processor OMP, where N = n-k for
some integer k > 2. The idea of performing
a two-dimensional FFT on an OMP is to
perform a one-dimensional FFT along one
dimension in a row-access mode.

All n processors then synchronize, switch
to a column-access mode, and perform
another one-dimensional FFT along the
second dimension. First try the case where N
= 8,n = 4,and k = 2 and then work out the
general case for large N > n.

Problem 9.6 The following questions are related
to shared virtual memory:

(a) Why has shared virtual memory (SVM)
become a necessity in building a scalable
system with memories physically distributed
over a large number of processing nodes?

(p) What are the major differences in
implementing SVM at the cache block level
and the page level?

Problem 9.7 The release consistency (RC) model
has combined the advantages of both the processor
consistency (PC) and the weak consistency (WC)
models. Answer the following questions related to
these consistency models:
{a) Compare the implementation requirements
in the three consistency models.
(b) Comment on the advantages
shortcomings of each consistency model.

and

Problem 9.8 Answer the following questions
invalving the MIT J-Machine:

(a) Whatwere the unique features of the message-
driven processors {MDP) making it suitable
for building fine-grain multicomputers?

(b) Explain the E-cube routing mechanism built
into the MDP.

(¢) Explain the concept of using a combining
tree for synchronization of events on various
nodes in the J-Machine.

Advanced Computer Architecture

Problem 9.9 Why are hypercube networks
{binary n<ube networks), which were very popular
in first-generation multicomputers, being replaced
by 2D or 3D meshes or tori in the second and third
generations of multicomputers?

Problem 9.10
the 5Cl standard:
(2) Explain the sharing-list creation and update
methods used in the |EEE Scalable Coherence
fnterface (SCI} standard.
{b) Commenton theadvantagesand disadvantages
of chained directories for cache coherence
control in large-scale muitiprocessor systems.

Answer the following questions on

Problem 9.11 Compare the four context-
switching policies: switch on cache miss, switch on
every load, switch on every instruction (cycle by
cycle), and switch on block of instructions.
{a) What are the advantages and shortcomings of
each policy?
{b) WVhat additional research would be needed to
make an optimal choice among these policies?

Problem 9.12 After studying the Dash memory
hierarchy and directory protocol, answer the
following questions with an analysis of potential
performance:

(a) Define the cache states used in Dash.

(b) How were the cache directories implemented
in the memory hierarchy?

(c) Explain the Dash directory-based coherence
protocol when reading a remote cache block
that is dirty in a remote cluster.

(d) Repeat part (c) for the case of writing to a
shared remote cache block.

Problem 9.13 Answer the following questions
on multiprocessors:

(a) Describe the ALLCACHE architecture
implemented in the Kendall Square Research
KSR-1.

(b) Explain how cache coherence can be main-
tained in the KSR-1.

Scalable, Multithreaded, and Dataflow Architectures

(©)

Problem 9.14

Study the papers on COMA architectures
by Stenstrém et al (1992) and Hagersten
et al (1990). Compare the differences
between KSR-1 and the Data Diffusion
Machine (DDM) architecture.

Answer the following questions

on the development of the Tera computer.

(@)
(b)

{c)

(d)

(f

What were the design goals of the Tera
computer?

Explain the sparse 3D torus used in Tera.
What are the advantages of the sparse
structure!

Explain how pipelining is applied in supporting
the multithreaded operations in each Tera
processor.

Explain the thread state and management
scheme used in Tera.

Explain the idea of explicit-dependence
lookahead and its effects on multithreading in
Tera.

What are the contributions of the Tera
architecture and software development?
Compare the advantages and potential
drawbacks of the Tera computer.

Problem 9.15 Answer the following questions
related to dataflow computers:

(a)
(b)

Distinguish ~ between static dataflow
computers and dynamic dataflow computers.
Draw a dataffow graph showing the
computations of the roots of a sequence of
quadratic equations A,—x,z- +Bx,+C=0fori=
1,2, N

Consider the parallel execution of the
successive root computations with a four-PE
tagged-token dataflow computer (Fig. 2.12).
Show a minimum-time schedule for using the
four PEs to compute the N pairs of roots.

Problem %.16 Consider the mapping of a one-

dimensional

circular convolution computation

on a multiprocessor with 4 processors and 32

T 469

memory modules which are 32-way interleaved
for pipelined access of vector data. Assume no
contention between processors and memories in
the interconnection network. The one-dimensional
convolution is defined over a 1 X n image and a
1 % m kernel as follows:

Y(i)
(@)

(b)

(d)

m-1

= Y W) X((i~j mod n) for 0<i<n—1

=0
How many multiplications and additions are
involved in the above computations? Map the
image pixels X{f) to memory module M if j =
i {mod 32) and assume n = 256. The output
image Y{i) is also stored in module M; if j =
i {mod 32) for 0 <i < 255 The kernel is also
stored in a similar manner. Assume m = 4 and
each processor handles the computation of
one output image,
Show how to partition the computations
among the four processors such that minimum
time is spent in both memory-access and CPU
executions. Assume no memory conflicts and
up to four fetch or store operations (but
not mixed) performed at the same time. The
interleaved memory can be accessed by one
or more processors at the same time,
What is the minimum execution time
(inciuding both memory and CPU opera-
tions) if each multiply and add and each
interleaved memory access is considered one
time unit. Assume enough working registers
are available in each CPU,
What is the speedup factor of the above
multiprocessor solution over a uniprocessor
solution? You can make simifar assumptions
about the use of the 32-way interleaved
memory for both uniprocessor and multi-
processor configurations.

Problem 9.17 Answer the following questions on
fine-grain multicomputers and massive parallelism:

(@)

Why are fine-grain processors chosen for

470" HR. Advanced Computer Architecture

research-oriented multicomputers and MPP {c) From scalability point of view, why is fine-grain

systems over medium-grain processors used parallelism more appealing than medium-

in the past? grain or coarse-grain parallelism for building
(b) Why is a single global addressing space MPP systems?

desired over distributed address spaces?

